Augmented Reality and Virtual Reality applications

AR represents a reservoir of sheer untapped potential for businesses. We work with clients to develop novel and innovative AR-based solutions for their businesses.

AR and VR can deliver realistic psychological and physical experiences through simulations in a safe environment. Both of these technologies have enormous opportunities in the near future.

Augmented reality (AR) is a type of interactive, reality-based display environment that takes the capabilities of computer generated display, sound, text and effects to enhance the user's real-world experience. Augmented reality combines real and computer-based scenes and images to deliver a unified but enhanced view of the world.

Augmented reality(AR) and virtual reality (VR) are two of the ways that tech can change the way you look at the world. The terms can be confusing. Sometimes people think AR and VR are the same thing.

Augmented reality and virtual reality are increasingly used in technology, so knowing the difference is important.

What is Augmented Reality?

Augmented reality has many different implementation models and applications, but its primary objective is to provide a rich audiovisual experience. AR works by employing computerized simulation and techniques such as image and speech recognition, animation, head-mounted and hand-held devices and powered display environments to add a virtual display on top of real images and surroundings.

Augmented reality is the integration of digital information with the user's environment in real time. Unlike virtual reality, which creates a totally artificial environment, augmented reality uses the existing environment and overlays new information on top of it.

Augmented reality apps are written in special 3D programs that allow the developer to tie animation or contextual digital information in the computer program to an augmented reality "marker" in the real world. When a computing device's AR app or browser plug-in receives digital information from a known marker, it begins to execute the marker's code and layer the correct image or images.AR applications for smartphones typically include global positioning system (GPS) to pinpoint the user's location and its compass to detect device orientation. Sophisticated AR programs used by the military for training may include machine vision, object recognition and gesture recognition technologies.

A Simple Explanation of Augmented Reality (AR)

The origin of the word augmented is augment, which means to add or enhance something. In the case of Augmented Reality (also called AR), graphics, sounds, and touch feedback are added into our natural world to create an enhanced user experience.

How does Augmented Reality work

What is Augmented Reality for many of us implies a technical side, i.e. how does AR work? For AR a certain range of data (images, animations, videos, 3D models) may be used and people will see the result in both natural and synthetic light. Also, users are aware of being in the real world which is advanced by computer vision, unlike in VR.AR can be displayed on various devices: screens, glasses, handheld devices, mobile phones, head-mounted displays. It involves technologies like S.L.A.M. (simultaneous localization and mapping), depth tracking (briefly, a sensor data calculating the distance to the objects), and the following components:

Cameras and sensors. Collecting data about user’s interactions and sending it for processing. Cameras on devices are scanning the surroundings and with this info, a device locates physical objects and generates 3D models. It may be special duty cameras, like in Microsoft Hololens, or common smartphone cameras to take pictures/videos.

Processing. AR devices eventually should act like little computers, something modern smartphones already do. In the same manner, they require a CPU, a GPU, flash memory, RAM, Bluetooth/WiFi, a GPS, etc. to be able to measure speed, angle, direction, orientation in space, and so on.

Projection. This refers to a miniature projector on AR headsets, which takes data from sensors and projects digital content (result of processing) onto a surface to view. In fact, the use of projections in AR has not been fully invented yet to use it in commercial products or services.

Reflection. Some AR devices have mirrors to assist human eyes to view virtual images. Some have an “array of small curved mirrors” and some have a double-sided mirror to reflect light to a camera and to a user’s eye. The goal of such reflection paths is to perform a proper image alignment.

Types of Augmented Reality

Several categories of augmented reality technology exist, each with varying differences in their objectives and applicational use cases. Below, we explore the various types of technologies that make up augmented reality:

Marker Based Augmented Reality

Marker Based Augmented RealityMarker-based augmented reality (also called Image Recognition) uses a camera and some type of visual marker, such as a QR/2D code, to produce a result only when the marker is sensed by a reader. Marker based applications use a camera on the device to distinguish a marker from any other real world object. Distinct, but simple patterns (such as a QR code) are used as the markers, because they can be easily recognized and do not require a lot of processing power to read. The position and orientation is also calculated, in which some type of content and/or information is then overlaied the marker.

Markerless Augmented Reality

Markerless Augmented RealityAs one of the most widely implemented applications of augmented reality, markerless (also called location-based, position-based, or GPS) augmented reality, uses a GPS, digital compass, velocity meter, or accelerometer which is embedded in the device to provide data based on your location. A strong force behind markerless augmented reality technology is the wide availability of smartphones and location detection features they provide. It is most commonly used for mapping directions, finding nearby businesses, and other location-centric mobile applications.

Projection Based Augmented Reality

Projection Based Augmented RealityProjection based augmented reality works by projecting artificial light onto real world surfaces. Projection based augmented reality applications allow for human interaction by sending light onto a real world surface and then sensing the human interaction (i.e. touch) of that projected light. Detecting the user’s interaction is done by differentiating between an expected (or known) projection and the altered projection (caused by the user’s interaction). Another interesting application of projection based augmented reality utilizes laser plasma technology to project a three-dimensional (3D) interactive holograminto mid-air.

Superimposition Based Augmented Reality

Superimposition Based Augmented RealitySuperimposition based augmented reality either partially or fully replaces the original view of an object with a newly augmented view of that same object. In superimposition based augmented reality, object recognition plays a vital role because the application cannot replace the original view with an augmented one if it cannot determine what the object is. A strong consumer-facing example of superimposition based augmented reality could be found in the Ikea augmented reality furniture catalogue. By downloading an app and scanning selected pages in their printed or digital catalogue, users can place virtual ikea furniture in their own home with the help of augmented reality.

The future of augmented reality

This doesn't mean that phones and tablets will be the only venue for AR. Research continues apace on including AR functionality in contact lenses, and other wearable devices. The ultimate goal of augmented reality is to create a convenient and natural immersion, so there's a sense that phones and tablets will get replaced, though it isn't clear what those replacements will be. Even glasses might take on a new form, as "smart glasses" are developed for blind people.

Like any new technology, AR has a lot of political and ethical issues. Google Glass, for example, raised privacy concerns. Some worried that conversations might be surreptitiously recorded or pictures snapped, or thought that they might be identified by face recognition software. AR glasses, contacts and more, like the Glass - X and Google Lens, though, are moving ahead in production and sales.

What is Virtual Reality?

The definition of virtual reality comes, naturally, from the definitions for both ‘virtual’ and ‘reality’. The definition of ‘virtual’ is near and reality is what we experience as human beings. So the term ‘virtual reality’ basically means ‘near-reality’. This could, of course, mean anything but it usually refers to a specific type of reality emulation.

We know the world through our senses and perception systems. We have five senses: taste, touch, smell, sight and hearing. These are however only our most obvious sense organs. The truth is that humans have many more senses than this, such as a sense of balance for example. These other sensory inputs, plus some special processing of sensory information by our brains ensures that we have a rich flow of information from the environment to our minds.

Everything that we know about our reality comes by way of our senses. In other words, our entire experience of reality is simply a combination of sensory information and our brains sense-making mechanisms for that information. It stands to reason then, that if you can present your senses with made-up information, your perception of reality would also change in response to it. You would be presented with a version of reality that isn’t really there, but from your perspective it would be perceived as real. Something we would refer to as a virtual reality.

How is virtual reality achieved?

Although we talk about a few historical early forms of virtual reality elsewhere on the site, today virtual reality is usually implemented using computer technology. There are a range of systems that are used for this purpose, such as headsets, omni-directional treadmills and special gloves. These are used to actually stimulate our senses together in order to create the illusion of reality.

This is more difficult than it sounds, since our senses and brains are evolved to provide us with a finely synchronised and mediated experience. If anything is even a little off we can usually tell. This is where you’ll hear terms such as immersiveness and realism enter the conversation. These issues that divide convincing or enjoyable virtual reality experiences from jarring or unpleasant ones are partly technical and partly conceptual. Virtual reality technology needs to take our physiology into account. For example, the human visual field does not look like a video frame. We have (more or less) 180 degrees of vision and although you are not always consciously aware of your peripheral vision, if it were gone you’d notice. Similarly when what your eyes and the vestibular system in your ears tell you are in conflict it can cause motion sickness. Which is what happens to some people on boats or when they read while in a car.

If an implementation of virtual reality manages to get the combination of hardware, software and sensory synchronicity just right it achieves something known as a sense of presence. Where the subject really feels like they are present in that environment.

A believable, interactive 3D computer-created world that you can explore so you feel you really are there, both mentally and physically.Putting it another way, virtual reality is essentially:

Believable: You really need to feel like you're in your virtual world (on Mars, or wherever) and to keep believing that, or the illusion of virtual reality will disappear.

Interactive: As you move around, the VR world needs to move with you. You can watch a 3D movie and be transported up to the Moon or down to the seabed—but it's not interactive in any sense.

Computer-generated: Why is that important? Because only powerful machines, with realistic 3D computer graphics, are fast enough to make believable, interactive, alternative worlds that change in real-time as we move around them.

Explorable: A VR world needs to be big and detailed enough for you to explore. However realistic a painting is, it shows only one scene, from one perspective. A book can describe a vast and complex "virtual world," but you can only really explore it in a linear way, exactly as the author describes it.

Immersive: To be both believable and interactive, VR needs to engage both your body and your mind. Paintings by war artists can give us glimpses of conflict, but they can never fully convey the sight, sound, smell, taste, and feel of battle. You can play a flight simulator game on your home PC and be lost in a very realistic, interactive experience for hours (the landscape will constantly change as your plane flies through it), but it's not like using a real flight simulator (where you sit in a hydraulically operated mockup of a real cockpit and feel actual forces as it tips and tilts), and even less like flying a plane.

Types of virtual reality

"Virtual reality" has often been used as a marketing buzzword for compelling, interactive video games or even 3D movies and television programs, none of which really count as VR because they don't immerse you either fully or partially in a virtual world. Search for "virtual reality" in your cellphone app store and you'll find hundreds of hits, even though a tiny cellphone screen could never get anywhere near producing the convincing experience of VR. Nevertheless, things like interactive games and computer simulations would certainly meet parts of our definition up above, so there's clearly more than one approach to building virtual worlds—and more than one flavor of virtual reality. Here are a few of the bigger variations:

Fully immersive

For the complete VR experience, we need three things. First, a plausible, and richly detailed virtual world to explore; a computer model or simulation, in other words. Second, a powerful computer that can detect what we're going and adjust our experience accordingly, in real time (so what we see or hear changes as fast as we move—just like in real reality). Third, hardware linked to the computer that fully immerses us in the virtual world as we roam around. Usually, we'd need to put on what's called a head-mounted display (HMD) with two screens and stereo sound, and wear one or more sensory gloves. Alternatively, we could move around inside a room, fitted out with surround-sound loudspeakers, onto which changing images are projected from outside. We'll explore VR equipment in more detail in a moment.

Non-immersive

A highly realistic flight simulator on a home PC might qualify as nonimmersive virtual reality, especially if it uses a very wide screen, with headphones or surround sound, and a realistic joystick and other controls. Not everyone wants or needs to be fully immersed in an alternative reality. An architect might build a detailed 3D model of a new building to show to clients that can be explored on a desktop computer by moving a mouse. Most people would classify that as a kind of virtual reality, even if it doesn't fully immerse you. In the same way, computer archaeologists often create engaging 3D reconstructions of long-lost settlements that you can move around and explore. They don't take you back hundreds or thousands of years or create the sounds, smells, and tastes of prehistory, but they give a much richer experience than a few pastel drawings or even an animated movie.

Collaborative

What about "virtual world" games like Second Life and Minecraft? Do they count as virtual reality? Although they meet the first four of our criteria (believable, interactive, computer-created and explorable), they don't really meet the fifth: they don't fully immerse you. But one thing they do offer that cutting-edge VR typically doesn't is collaboration: the idea of sharing an experience in a virtual world with other people, often in real time or something very close to it. Collaboration and sharing are likely to become increasingly important features of VR in future.

Web-based

Virtual reality was one of the hottest, fastest-growing technologies in the late 1980s and early 1990s, but the rapid rise of the World Wide Web largely killed off interest after that. Even though computer scientists developed a way of building virtual worlds on the Web (using a technology analogous to HTML called Virtual Reality Markup Language, VRML), ordinary people were much more interested in the way the Web gave them new ways to access real reality—new ways to find and publish information, shop, and share thoughts, ideas, and experiences with friends through social media. With Facebook's growing interest in the technology, the future of VR seems likely to be both Web-based and collaborative.